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Abstract The oracle chooses a function out of a known set of functions and gives to the
player a black box that, given an argument, evaluates the function. The player should find
out a certain character of the function (e.g. its period) through function evaluation. This is
the typical problem addressed by the quantum algorithms. In former theoretical work, we
showed that a quantum algorithm requires the number of function evaluations of a classical
algorithm that knows in advance 50% of the information that specifies the solution of the
problem. This requires representing physically, besides the solution algorithm, the possible
choices of the oracle.

Here we check that this 50% rule holds for the main quantum algorithms. In structured
problems, a classical algorithm with the advanced information, to identify the missing infor-
mation should perform one function evaluation. The speed up is exponential since a classical
algorithm without advanced information should perform an exponential number of function
evaluations. In unstructured database search, a classical algorithm that knows in advance
n/2 bits of the database location, to identify the n/2 missing bits should perform O(2n/2)

function evaluations. The speed up is quadratic since a classical algorithm without advanced
information should perform O(2n) function evaluations. The 50% rule allows to identify in
an entirely classical way the problems solvable with a quantum sped up.

The advanced information classical algorithm also defines the quantum algorithm that
solves the problem. Each classical history, corresponding to a possible way of getting the
advanced information and a possible result of computing the missing information, is repre-
sented in quantum notation as a sequence of sharp states. The sum of the histories yields the
function evaluation stage of the quantum algorithm. Function evaluation entangles the ora-
cle’s choice register (containing the function chosen by the oracle) and the solution register
(in which to read the solution at the end of the algorithm). Information about the oracle’s
choice propagates from the former to the latter register. Then the basis of the solution regis-
ter should be rotated to make this information readable. This defines the quantum algorithm,
or its iterate and the number of iterations.
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1 Introduction

We provide some context.
The problem typically addressed by a quantum algorithm can be seen as a competition

between two players. There is a set of functions known to both players, for example the set
of the periodic functions fk(x) : {0,1}n → {0,1}n−1. The first player (the oracle) chooses
one of these functions and gives to the second player a black box (i.e. non-inspectable in-
side) hardwired for the computation of that function. The second player should find out a
certain character of the function (for example its period) by computing fk(x) for different
values of x. As well known, the quantum algorithm requires a substantially lower number
of function evaluations than the corresponding classical algorithm.

In [5–7], on the basis of theoretical considerations, we showed that the quantum algo-
rithm requires the number of function evaluations of a classical algorithm that knows in
advance 50% of the information that specifies the solution of the problem (see also [4]).

To see this, the key step (common to the present work) is representing physically the
interdependence between the problem and the solution. One should represent, together with
the algorithm that solves the problem, the production of the problem on the part of the oracle.
To this end, we replace the black box hardwired for the computation of fk(x) by a general
purpose black box, that, given the inputs x (the argument of the function) and k (the table
of the function fk(x)—each row being the pair “value of the argument”/“value of the func-
tion”), computes f (k, x) = fk(x). We need an auxiliary input register K that contains k.
If the function is binary, k is an unstructured bit string (the sequence of function values for
increasing arguments), otherwise it is a structured string. Register K , just a conceptual ref-
erence, is ideally added to the usual input register X (containing the value of x to query the
black box with) and output register V (hosting the result of function evaluation f (k, x)).
K is prepared in the even weighted superposition of all the possible valuations of k, X

and V , as usual, respectively in the even weighted superposition of all the possible values of
x and in an initial state depending on the algorithm. Each function evaluation entangles the
oracle’s choice register K and the solution register X. Correspondingly, information about
the oracle’s choice propagates from the former to the latter register. Eventually, we rotate
the basis of X to make this information readable. Function evaluation and rotation of the
X basis is done once (for just one function evaluation) in Deutsch’s, Deutsch&Jozsa’s, and
Simon’s algorithm, iteratively (for a number of iterations O(2n/2)) in Grover’s algorithm.
Measuring the content of K and X at the end of the algorithm, induces state reduction on
both the function chosen by the oracle (a valuation of k hosted in register K) and the solution
produced by the algorithm (hosted in register X).1

In this picture, quantum computation is reduction on the solution of the problem under
a relation (or correlation) representing problem-solution interdependence—the correlation
is between the content of register K (the oracle’s choice) and the content of register X (the
solution) measured at the end of the algorithm. Backdating in time, to before running the
algorithm, a time symmetric part of this reduction shows that the quantum algorithm requires

1Backdating to before running the algorithm the reduction induced by measuring the content of K yields the
usual quantum algorithm.
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the number of function evaluations of a classical algorithm that knows in advance 50% of
the information about the solution of the problem. We call this the 50% rule.

In this context, the information that specifies the solution of the problem is the informa-
tion that specifies both the solution and the problem, this latter being the information in the
string k. Since the solution is a function of k, the information that specifies the solution is
redundant with respect to the information in k. Knowing in advance 50% of the informa-
tion that specifies the solution of the problem amounts to knowing in advance 50% of the
information in k.

The main objective of this work is checking that the 50% rule holds for the main quan-
tum algorithms: Deutsch, Deutsch&Jozsa, Simon (where the analysis extends by similarity
to the hidden subgroup algorithms, thus in particular to the quantum part of Shor’s algo-
rithm), and Grover. First we review the extended representation of the algorithm (extended
to the oracle’s choice), then we show that the number of function evaluations required by
the quantum algorithm is the same of a classical algorithm that knows in advance 50% of
the information in k.

In the case of the structured problems, the classical algorithm knowing in advance 50%
of the rows of the table (excluding those half tables that already specify the solution of
the problem), in order to identify the solution of the problem should compute one (any
one) of the missing rows—i.e. perform one function evaluation for any value of x outside
the advanced information. The speed up is exponential since a classical algorithm without
advanced information should compute an exponential number of rows.

In unstructured database search, a classical algorithm that knows in advance n/2 bits of
the database location, to identify the n/2 missing bits should perform O(2n/2) function eval-
uations. The speed up is quadratic since a classical algorithm without advanced information
should perform O(2n) function evaluations.

Thus the speed up comes from comparing two classical algorithms, with and without
advanced information. The 50% rule brings the identification of the problems liable of being
solved with a quantum speed up to an entirely classical framework.

We also pursue a secondary objective that comes natural in this context. We show that
the advanced information classical algorithm defines the quantum algorithm. To this end we
should consider the “skeleton” of the classical algorithm. This, given the advanced infor-
mation, performs the function evaluations required to identify the solution of the problem
(identifying does not mean computing)—this is what is needed to build the quantum algo-
rithm out of it.

We consider all the possible histories of this classical algorithm. Each history—
corresponding to a possible way of getting the advanced information and a possible result
of computing the missing information—is represented in quantum notation as a sequence
of sharp states. The sum of the histories yields the function evaluation stage of the quantum
algorithm, namely the initial preparation and the outcome of function evaluation; the initial
phase of each history should be chosen in such a way that the transfer of information from
the classical to the quantum algorithm is maximized—this yields the initial state of register
V for the various algorithms.

As already said, each function evaluation entangles the oracle’s choice register K and
the solution register X and information about the oracle’s choice propagates from the for-
mer to the latter register. Which is this information is clear when the entanglement pro-
duced by function evaluation is maximal, which is the case in the algorithms of Deutsch,
Deutsch&Jozsa (where the only function evaluation produces a maximally entangled state),
and Grover (where each function evaluation feeds the amplitude a maximally entangled state
at the expense of the amplitude of an unentangled state). In the maximally entangled state,
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each orthogonal state of K (possibly itself a quantum superposition) corresponds to a solu-
tion of the problem and is correlated with an orthogonal state of X. This allows to define
in a constructive way the rotation of the X basis that makes the solution readable, which
completes the definition of the quantum algorithm (of the algorithm’s iterate in Grover’s
case). Which is the information propagated to register X is less clear in the case of Simon’s
and the hidden subgroup algorithms, where the entanglement produced by function evalua-
tion is not maximal; the final rotation of the X basis (here the Hadamard transform on X)
can still be defined as the transformation that maximizes the information about the oracle’s
choice readable in it; this helps in circumscribing the problem but is no more a constructive
definition.

Summing up, the 50% rule brings the search of the speed ups to an entirely classical
framework. Once identified a problem liable of speed up, the same rule could be used a sec-
ond time for searching the quantum algorithm that solves the problem. In fact the advanced
information classical algorithm defines the quantum algorithm.

2 Deutsch’s Algorithm

2.1 Reviewing and Extending the Algorithm

We review Deutsch’s algorithm [9] as revised by Cleve et al. [8]. The problem is as fol-
lows. An oracle chooses at random one of the four binary functions fk : {0,1} → {0,1}, see
Table 1. k ≡ k0, k1 is a two-bit string belonging to {0,1}2.

Note that k0 = fk(0) and k1 = fk(1)—the string k is both the subfix of f and, clockwise
rotated, the table of function values ordered for increasing values of the argument. Then the
oracle gives to the second player a black box that, given the inputs k and x, computes fk(x).
The second player, by trying function evaluation for different values of x, must find whether
the function is balanced (i.e. f01 or f10, with an even number of zeroes and ones) or constant
(i.e. f00 or f11). This requires two function evaluations in the classical case (for x = 0 and
x = 1), just one in the quantum case.

Deutsch’s algorithm is the root of all subsequent quantum algorithms, for what con-
cerns both the speed up and the representation of quantum computation. Bits are replaced
by qubits [11, 12] and reversible logical operations [2, 3, 13] by unitary transforma-
tions [1, 11, 12].

The original algorithm uses a one qubit input register X, containing the value of x chosen
by the second player to query the black box with, and a one qubit output register V , initially
containing v and eventually the result of function evaluation. Function evaluation leaves X

unaltered and puts v⊕fk(x) in V —the result of function evaluation is module 2 added to the
former content of V for logical reversibility. The quantum algorithm consists of three steps:
(0) preparing register X in an even weighted superposition of all the possible values of x and
register V in the antisymmetric state, (1) performing function evaluation, and (2) applying
the Hadamard transform to register X.

Table 1 Set of functions known
to both players in Deutsch’s
algorithm

x f00(x) f01(x) f10(x) f11(x)

0 0 0 1 1

1 0 1 0 1
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We give directly Deutsch’s algorithm extended to the representation of the random choice
of the function on the part of the oracle [5–7]. To this end we add to the description an
auxiliary input register K containing the oracle’s choice k. The initial state is:

�0 = 1

4
(|00〉K + |01〉K + |10〉K + |11〉K)(|0〉X + |1〉X)(|0〉V − |1〉V ), (1)

where the superposition hosted in register K is indifferently coherent or incoherent (in the
latter case each ket should be multiplied by a random phase factor, e.g. |00〉K would be-
come eiδ00 |00〉K , with δ00 a random angle with uniform distribution in [0,2π] etc.). This
superposition represents the initial ignorance of the second player about the oracle’s choice.

Function evaluation transforms �0 into:

�1 = 1

4

[
(|00〉K − |11〉K)(|0〉X + |1〉X) + (|01〉K − |10〉K)(|0〉X − |1〉X)

]
(|0〉V − |1〉V ). (2)

Applying the Hadamard transform to register X yields

�2 = 1

2
√

2

[
(|00〉K − |11〉K)|0〉X + (|01〉K − |10〉K)|1〉X

]
(|0〉V − |1〉V ). (3)

Let us denote by [K] the content of register K , by [X] the content of X, etc. Measuring [K]
and [X] in (3) determines the moves of both players, namely the oracle’s choice k ≡ k0, k1

(in register K) and the solution found by the second player, namely k0 ⊕ k1 (in register X).
Backdating to before running the algorithm the state reduction induced by measuring [K]
gives the original Deutsch’s algorithm—it generates at random the value of k hosted in the
black box.

2.2 Checking the 50% Rule

The information acquired by measuring [K] and [X] in (3) is 2 bits—the two bits of regis-
ter K ; in fact the content of X is a function of the content of K , therefore the information
contained in X is redundant. The quantum algorithm requires the number of function eval-
uations of a classical algorithm working on a solution space reduced in size because one
bit of information about the content of K , either k0 = f (k,0) or k1 = f (k,1), is known
in advance. To identify the character of the function, this algorithm must acquire the other
bit of information by computing, respectively, either k1 = f (k,1) or k0 = f (k,0). Thus the
classical algorithm has to perform just one function evaluation like the quantum algorithm.
This verifies the 50% rule in the case of Deutsch’s algorithm.

Interestingly, this rule shows that Deutsch’s problem is liable of a quantum speed up
independently of our knowledge of the quantum algorithm. In fact the speed up comes from
comparing two classical algorithms, with and without the advanced information.

2.3 Building the Quantum Algorithm out of the Advanced Information Classical
Algorithm

Let us build the function evaluation stage of the quantum algorithm out of the corresponding
stage of a classical algorithm that knows in advance 50% of k. We should combine all the
possible ways of getting the advanced information and all the possible results of computing
the missing information, see Table 2.

We represent the possible histories in quantum notation. Since we are dealing with clas-
sical computations, we require that the input and the output of each history (before and after
function evaluation) is a sharp quantum state. There are sixteen possible histories:
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Table 2 Combinations

# Advanced information Result of function evaluation Character of the function

1 k0 = 0 k1 = f (k,1) = 0 constant

2 k0 = 0 k1 = f (k,1) = 1 balanced

3 k0 = 1 k1 = f (k,1) = 0 balanced

4 k0 = 1 k1 = f (k,1) = 1 constant

5 k1 = 0 k0 = f (k,0) = 0 constant

6 k1 = 0 k0 = f (k,0) = 1 balanced

7 k1 = 1 k0 = f (k,0) = 0 balanced

8 k1 = 1 k0 = f (k,0) = 1 constant

• Row #1. The advanced information is k0 = 0. The classical algorithm should compute
k1 = f (k,1) that, for this row, is k1 = f (k,1) = 0. The quantum representation of the or-
acle’s choice is thus |00〉K . Register X should be in |1〉X , the state to query the black box
with in order to compute f (k,1). Since the result of this computation is module 2 added
to the initial content of register V , we should split row #1 into two sub-rows: #1.1 with
register V initially in |0〉V and #1.2 with register V initially in |1〉V . The initial state of his-
tory #1.1 is thus �

(1.1)

0 = |00〉K |1〉X|0〉V , that of history #1.2 is �
(1.2)

0 = −|00〉K |1〉X|1〉V .
These computation histories have to be added together and must be given an initial phase.
For the time being, we set the initial phase of each history in such a way that, in the
superposition of all histories, we obtain the initial state of the quantum algorithm; fur-
ther below we justify this choice independently of our a priori knowledge of the quantum
algorithm. To simplify the notation, we sum together the initial states of these two histo-
ries: �

(1)

0 = �
(1.1)

0 + �
(1.2)

0 = |00〉K |1〉X(|0〉V − |1〉V ). We take care of normalization at
the end. Function evaluation transforms �

(1)

0 into itself: �
(1)

1 = �
(1)

0 (module 2 adding
f (00,1) = 0 to the former content of V leaves this content unaltered).

• Row #5. Advanced information k1 = 0, result of function evaluation k0 = f (k,0) = 0.
Applying the same rationale of the above point, we obtain the initial state �

(5)

0 =
|00〉K |0〉X(|0〉V − |1〉V ); function evaluation transforms this state into itself: �

(5)

1 = �
(5)

0 .
• The sum of the histories of rows #1 and #5 yields the transformation of |00〉K(|0〉X +

|1〉X)(|0〉V −|1〉V ) into itself, namely the function evaluation stage of Deutsch’s algorithm
when K is in |00〉K .

• Row #2. Advanced information k0 = 0; result of function evaluation k1 = f (k,1) =
1; initial state �

(2)

0 = |01〉K |1〉X(|0〉V − |1〉V ); state after function evaluation �
(2)

1 =
−|01〉K |1〉X(|0〉V − |1〉V ) (module 2 adding f (01,1) = 1 to the former content of V

swaps |0〉V and |1〉V ; the overall result is rotating the phase of the present pair of histories
by π ).

• Row #7. Advanced information k1 = 1, result of function evaluation k0 = f (k,0) =
0; initial state �

(7)

0 = |01〉K |0〉X(|0〉V − |1〉V ); state after function evaluation �
(7)

1 =
�

(7)

0 (module 2 adding f (01,0) = 0 to the former content of V leaves this content un-
altered).

• The sum of the histories of rows #2 and #7 yields the transformation of |01〉K(|0〉X +
|1〉X)(|0〉V − |1〉V ) into |01〉K(|0〉X − |1〉X)(|0〉V − |1〉V ), namely the function evaluation
stage of Deutsch’s algorithm when K is in |01〉K .

• We proceed in a similar way for the other histories. Summing together this quantum
representations of the 16 classical histories and normalizing yields the transformation
of �0 (1) into �1 (2).
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In hindsight, we can see a shortcut. With reference to the above classical algorithm
in quantum notation, for each |k〉K , we perform function evaluation not only for those
values of x required to identify the solution of the problem, but also for all the other
possible values of x; in other words we perform function evaluation for each product
|k〉K(|0〉X + |1〉X)(|0〉V − |1〉V ); junk histories (for that |k〉K ) do not harm, the important
thing is performing function evaluation for the values of x required to identify the solution.
As one can see, this yields directly the transformation of �0 (1) into �1 (2). Conversely, by
simply inspecting the form of �0 in (1), one can see that each |k〉K(|0〉X +|1〉X)(|0〉V −|1〉V )

is the initial state of a bunch of histories as from the above shortcut. This holds in general
for the function evaluation stage of all quantum algorithms.

Summing up, quantum parallel computation can be seen as the sum of the histories of a
classical algorithm that, given the advanced information, computes the missing information
required to identify the solution of the problem.

By considering the sum of the histories, we can justify the choice of the initial phase.
We take the generic initial state of register V : α(|0〉V + |1〉V ) + β(|0〉V − |1〉V ); the initial
phase of the histories with register V in |0〉V becomes α + β , that of the histories with V in
|1〉V becomes α − β . Under the amplitude α, the computation performed by the reference
classical algorithm gets lost in the quantum translation, since the overall initial state of the
reference algorithm is transformed into itself. Under β we obtain the above development,
where the transfer of information from the classical to the quantum algorithm is maximum;
this justifies the choice α = 0 and β = 1.

Now we look at the outcome of the second stage (2). Function evaluation has created
a maximal entanglement between registers K and X, two orthogonal states of K , |00〉K −
|11〉K and |01〉K −|10〉K (or indifferently eiδ00 |00〉K −eiδ11 |11〉K and eiδ01 |01〉K −eiδ10 |10〉K )
are correlated with two orthogonal states of X, respectively |0〉X +|1〉X and |0〉X −|1〉X . This
means that, after function evaluation, register X contains the information that discriminates
between |00〉K −|11〉K and |01〉K −|10〉K , namely between constant and balanced functions.
Therefore we should rotate the X basis in such a way that this information becomes readable:
|0〉X + |1〉X should be transformed into |0〉X , etc. This is a constructive definition of the
Hadamard transform on register X. This completes the derivation of the quantum algorithm
from the classical algorithm with the advanced information.

3 Deutsch&Jozsa Algorithm

3.1 Reviewing and Extending the Algorithm

Deutsch&Jozsa’s algorithm is a generalization of Deutsch’s algorithm that achieves an expo-
nential speed up [10]). This time we deal with the set of the binary functions fk : {0,1}n →
{0,1} such that the function is either constant (all zeroes or all ones), or balanced (even
number of zeroes and ones). k ≡ k0, k1, . . . , k2n−1 is a 2n bit string belonging to {0,1}2n

.
Table 3 shows this set of functions for n = 2—we shall focus on this example. Note that
k0 = fk(00), k1 = fk(01), k2 = fk(10) and k3 = fk(11). The string k is both the subfix of
f and, clockwise rotated, the table of the function chosen by the oracle (the sequence of
function values for increasing arguments).

The problem is as follows. An oracle chooses at random one of these functions and gives
to the second player the black box hardwired for the computation of that function. The
second player, by trying function evaluation for different values of x, must find whether
the function is balanced or constant. In the worst case, this requires a number of function
evaluations exp(n) in the classical case, just one in the quantum case.
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Table 3 Set of functions known to both players in Deutsch&Jozsa’s algorithm

x f0000(x) f1111(x) f0011(x) f1100(x) f0101(x) f1010(x) f0110(x) f1001(x)

00 0 1 0 1 0 1 0 1

01 0 1 0 1 1 0 1 0

10 0 1 1 0 0 1 1 0

11 0 1 1 0 1 0 0 1

We give directly the extended quantum algorithm—extended to the physical representa-
tion of the random choice of the function on the part of the oracle. This time register K is
2n qubits (we should keep in mind that this register is just a conceptual reference), register
X is n qubits and register V is 1 qubit. As before, register K contains the valuation of k,
register X contains the value of x chosen by the second player (to query the black box with),
and register V , initially containing v, will contain the result of function evaluation. Func-
tion evaluation leaves the content of registers K and X unaltered and puts v ⊕ fk(x) in V .
The algorithm consists of three steps: (0) preparing register K in an even weighted super-
position of all the possible values of k, register X in an even weighted superposition of all
the possible values of x, and register V in the antisymmetric state, (1) performing function
evaluation, and (2) applying the Hadamard transform to register X.

The initial state is thus:

�0 = 1

8
(|0000〉K + |1111〉K + |0011〉K + |1100〉K + · · ·)

× (|00〉X + |01〉X + |10〉X + |11〉X)(|0〉V − |1〉V ). (4)

The black box, given the inputs k and x, computes f (k, x) ≡ fk(x) producing the outcome:

�1 = 1

4

[
(|0000〉K − |1111〉K)(|00〉X + |01〉X + |10〉X + |11〉X)

+ (|0011〉K − |1100〉K)(|00〉X + |01〉X − |10〉X − |11〉X) + · · ·](|0〉V − |1〉V ). (5)

Applying the Hadamard transform to register X yields

�2 = 1

4

[
(|0000〉K − |1111〉K)|00〉X + (|0011〉K − |1100〉K)|10〉X + · · ·](|0〉V − |1〉V ). (6)

Measuring [K] and [X] in (6) determines the moves of both players, namely the random
choice of the function (a valuation of the string k) on the part of the oracle and the solution
provided by the second player (the content of X): all zeroes if the function is constant, not so
if the function is balanced. Backdating to before running the algorithm the state reduction
induced by measuring [K] gives the original Deutsch&Jozsa’s algorithm—it generates at
random the value of k hosted in the black box.

3.2 Checking the 50% Rule

The information acquired by measuring [K] and [X] in (6) is the 2n bits of the string k (the
2n rows of the table of the function), the content of X is a function of the content of K ,
therefore the information contained in X is redundant. The quantum algorithm requires the
number of function evaluations of a classical algorithm working on a solution space reduced
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in size because 2n−1 bits of k, 50% of the rows of the table, are known in advance. We should
exclude the half tables containing different values of the function, which already identify the
solution. Since all the bits are the same, the solution is always identified by computing an
extra row, namely by performing just one function evaluation, for any value of x outside the
advanced information (if the function has the same value as in the former rows it is constant,
otherwise it is balanced). This demonstrates the 50% rule for Deutsch&Jozsa algorithm.

The 50% rule shows that Deutsch&Jozsa’s problem is liable of an exponential speed
up independently of our knowledge of the quantum algorithm—the speed up comes from
comparing two classical algorithms, with and without the advanced information (we recall
that this latter requires, in the worst case, an exponential number of function evaluations).

3.3 Building the Quantum Algorithm out of the Advanced Information Classical
Algorithm

The function evaluation stage of the quantum algorithm—namely the transformation of �0

(4) into �1 (5)—is the sum of the histories of the advanced information classical algorithm2

(see Sect. 2.3).
The choice of the initial phase of each history is justified as in Deutsch’s algorithm.
We examine the outcome of function evaluation, namely �1 (5). There is a maximal

entanglement between registers K and X. Orthogonal states of K , discriminating be-
tween constant and balanced functions (also between different kinds of balanced func-
tions, but this is not relevant here), are correlated with orthogonal states of X. This
means that the information whether the function is constant or balanced has propagated
to register X. To read this information, we should rotate the X basis in such a way that
(|0000〉K − |1111〉K)(|00〉X + |01〉X + |10〉X + |11〉X goes into (|0000〉K − |1111〉K)|00〉X ,
etc. This is a constructive definition of the Hadamard transform on register X. This com-
pletes the derivation of the quantum algorithm from the classical algorithm with the ad-
vanced information.

4 Simon’s Algorithm

4.1 Reviewing and Extending the Algorithm

This time we deal with the set of the “periodic” functions fk : {0,1}n → {0,1}n−1. The
“periodic” function fk(x) is such that fk(x) = fk(y) if and only if x = y or x = y ⊕ h(k),
where: k ≡ k0, k1, . . . , k2n−1 is a 2n bit string belonging to {0,1}2n

; h(k) ≡ h
(k)

0 , h
(k)

1 , . . . , h
(k)

n−1
is an n bit string (depending on the value of k) belonging to {0,1}n with the exclusion of
the all zeroes string; x and y are variables belonging to {0,1}n also represented as n bit
strings; ⊕ denotes bit by bit module 2 addition. Thus, the string h(k), also called the hidden
string, is a sort of period of the function fk(x). Since the bit by bit module 2 addition of the
period with itself is zero, each value of the function appears exactly twice in the table. Thus,
50% of the rows plus one surely contain a same value of the function twice, which identifies
the period.

2This is clear by looking at the form of �0 with the shortcut of Sect. 2.3 in mind. Without shortcut, we obtain
the same result but with an extra rule: in the case that the advanced information contains both zeroes and
ones (which implies that the function is balanced), no function evaluation is needed and there is no classical
history in such a case.
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Table 4 Set of functions known to both players in Simon’s algorithm

x h(0011) = 01 h(1100) = 01 h(0101) = 10 h(1010) = 10 h(0110) = 11 h(1001) = 11

f0011(x) f1100(x) f0101(x) f1010(x) f0110(x) f1001(x)

00 0 1 0 1 0 1

01 0 1 1 0 1 0

10 1 0 0 1 1 0

11 1 0 1 0 0 1

By way of exemplification, Table 4 gives the set of the periodic functions for n = 2. Note
that k0 = fk(00), k1 = fk(01), k2 = fk(10), and k3 = fk(11). In fact the string k is both the
subfix of f and, clockwise rotated, the table of function values for increasing values of the
argument. When n > 2, this table is a structured string—the sequence of 2n fields of n − 1
bits—each field yields a value of the function.

Since by definition each value of the function appears twice in the table of the function,
50% of the rows plus one surely contain a same value of the function twice, which identifies
the period.

In the original algorithm, a first player (the oracle) chooses at random a function fk(x),
then he gives to the second player the black box hardwired for the computation of that
function. The second player should find the string h(k) hidden in fk(x) (should find the
“period” of the function) by performing function evaluation for different values of x. To
find the value of h(k) with probability, say, 2

3 , fk(x) must be computed the order of 2
n
3 times

in the classical case, the order of 3n times in the quantum case (e.g. Kaye et al. [15]). There
is an exponential speed up.

The original algorithm [17] consists of three steps: (0) preparing register X in an even
weighted superposition of all the possible values of x and register V in |0〉V , (1) performing
function evaluation, and (2) applying the Hadamard transform to register X.

In the extended algorithm there are three registers. The 2n(n − 1) qubit register K con-
tains the value of k chosen by the oracle (the table of the function). The n qubit register X

contains the value of x chosen by the second player to query the black box with. The n − 1
qubit register V , initially containing v (an n−1 bit string), will contain the result of function
evaluation. Function evaluation leaves registers K and X unaltered and puts v ⊕fk(x) in V ,
⊕ denotes bit by bit module 2 addition. The initial state of the extended algorithm is:

�0 = 1

4
√

3
(|0011〉K + |1100〉K + |0101〉K + |1010〉K + · · ·)

× (|00〉X + |01〉X + |10〉X + |11〉X)|0〉V . (7)

The black box, given the inputs k and x, computes f (k, x) ≡ fk(x), producing the outcome:

�1 = 1

4
√

3

[
(|0011〉K + |1100〉K)[(|00〉X + |01〉X)|0〉V + (|10〉X + |11〉X)|1〉V ]

+ (|0101〉K + |1010〉K)[(|00〉X + |10〉X)|0〉V + (|01〉X + |11〉X)|1〉V ] + · · ·]. (8)

Applying the Hadamard transform to register X yields

�2 = 1

4

[
(|0011〉K + |1100〉K)[(|00〉X + |10〉X)|0〉V + (|00〉X − |10〉X)|1〉V ]

+ (|0101〉K + |1010〉K)[(|00〉X + |01〉X)|0〉V + (|00〉X − |01〉X)|1〉V ] + · · ·]. (9)
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Backdating to before running the algorithm the state reduction induced by measuring [K]
gives the original Simon’s algorithm—it generates at random the value of k hosted in the
black box.

As one can see (9), for each pair of complementary values of the oracle’s choice (e.g. for
register K in |0011〉K + |1100〉K ) and for each value of fk(x) (e.g. for register V in |0〉V ),
register X hosts an even weighted superposition (e.g. |00〉X + |10〉X) of the 2n−1 strings
s(k)
j (j = 1, . . . ,2n−1) “orthogonal” to the hidden string h(k) (if we multiply bit by bit two

orthogonal strings and take the module 2 addition of the product bits, the result is zero)—
00 and 10 are the two strings orthogonal to the hidden strings h(0011) = h(1100) ≡ 01. Note
that, in (9), only the phase of the terms of this superposition depend on the value of fk(x).
Therefore, by measuring [K] and [X] in (9), we obtain at random the oracle’s choice k and
one of the s(k)

j orthogonal to h(k).
At this point, we leave register K in its after-measurement state, so that the value of

k remains fixed, and iterate the right part of the algorithm (initial preparation of registers
X and V , function evaluation, Hadamard transform on X, and measurement of [X]) until
obtaining n− 1 different s(k)

j . This allows to find h(k) by solving a system of n− 1 module 2
linear equations. If the algorithm is iterated, say, 3n times, the probability of obtaining n−1
different h(k)

j , thus of finding the solution, is 2
3 . The probability of not finding the solution

goes down exponentially with the number of iterations.

4.2 Checking the 50% Rule

For simplicity, we reformulate Simon’s problem as the problem of generating at random
a string orthogonal to the hidden string. Any such string is thus a “solution”. For what
concerns the character of the speed up, the two formulations are equivalent, an exponential
speed up in the former implies an exponential speed up in the latter and vice-versa.

The information acquired in the final measurement of [K] and [X] is the information
contained in the string k, namely the table of the function chosen by the oracle (a four bit
string when n = 2). The information read in register X—s(k)

j —is redundant, since all s(k)
j

are function of k (which j sorts out in reading register X is not a function of k, but this
is a random event with no information in it). The quantum algorithm requires the number
of function evaluations of a classical algorithm working on a solution space reduced in size
because 50% of the rows of the table are known in advance. As before, we should discard the
half tables that already identify the solution. The solution is always identified by computing
an extra row, namely by performing just one function evaluation for any argument outside
the advanced information. This demonstrates the 50% rule for Simon’s algorithm.

The 50% rule says that Simon’s problem is liable of an exponential speed up through
the comparison of two classical algorithms, with and without the advanced information (we
recall that this latter algorithm, to solve the problem with probability 2

3 must perform 2
n
3

function evaluations).
One can readily see that the same holds by similarity for the generalized Simon’s algo-

rithm, thus for the hidden subgroup algorithms [16], like finding orders, finding the period of
a function (the quantum part of Shor’s factorization algorithm), finding discrete logarithms,
etc. (e.g., Kaye et al. [15]).

4.3 Building the Quantum Algorithm out of the Advanced Information Classical
Algorithm

The function evaluation stage of the quantum algorithm—namely the transformation of �0

(7) into �1 (8)—is the sum of the histories of the advanced information classical algorithm
(see Sect. 2.3).
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We justify the choice of the initial state of V . We start with the generic initial state
α|0〉V +β|1〉V (α is thus the initial phase of the histories beginning with |0〉V , etc.). Under α,
we obtain the transformation of �0 (7) into �1 (8). Under β , we obtain the same result with
|0〉V and |1〉V interchanged. Since we are interested in the superposition hosted in register X,
which is the same in either case, we can suppress either α or β .

We examine the outcome of function evaluation, namely �1 (8). This time the entan-
glement between registers K and X is not maximal. We know that one function evaluation
moves to register X information about the oracle’s choice, but we do not know which is this
information. The Hadamard transform on register X can still be defined as the rotation of the
X basis that maximizes the information about the oracle’s choice readable in it. However,
this is no more a constructive definition, we are left with the problem of discovering that this
information is a string orthogonal to h(k).

5 Grover’s Algorithm

5.1 Reviewing and Extending the Algorithm

The problem addressed by Grover’s algorithm [14] is database search. It can be seen as
a game between two players with a chest of N drawers; the first player (the oracle) hides
a ball in drawer number k; k ≡ k0, k1, . . . , kn−1 is an n bit string belonging to {0,1}n with
n = log2 N (for simplicity, we can assume that N is a power of 2). The second player must
find where the ball is. Opening drawer x to check whether the ball is in it amounts to com-
puting the Kronecker function δ(k, x), which is 1 if k = x and 0 otherwise.

The value of k chosen by the first player is hardwired inside a black box that, for each
input x, computes δ(k, x). The black box is given to the second player, who has to find the
value of k by computing δ(k, x) for different values of x (i.e., by opening different drawers
to check whether the ball is in it). In the classical case, to find the value of k, δ(k, x) must
be computed the order of N times, in the quantum case the order of

√
N times—there is a

quadratic speed up.
The original algorithm consists of three steps: (0) preparing register X in an even

weighted superposition of all the possible values of x and register V in the antisymmetric
state, (1) performing function evaluation, and (2) applying the transformation U to regis-
ter X (see further below).

We review the extension of Grover’s algorithm for n = 2 (further below we generalize to
n > 2). As usual we have three registers: the n qubit oracle’s choice register K containing
the database location chosen by the oracle,3 the n qubit query register X, and the 1 qubit
output register V .

The initial state is:

�0 = 1

4
√

2
(|00〉K + |01〉K + |10〉K + |11〉K)(|00〉X + |01〉X + |10〉X + |11〉X)(|0〉V − |1〉V ),

(10)

3We could have chosen a 2n qubit register containing the table of the binary function δ(k, x), but this register
would contain exactly the same information as the n qubit register, namely the database location chosen by
the oracle. The present definition of K simplifies the notation.
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Function evaluation, namely computing δ(k, x), yields:

�1 = 1

4
√

2

[|00〉K(−|00〉X + |01〉X + |10〉X + |11〉X)

+ |01〉K(|00〉X − |01〉X + |10〉X + |11〉X)

+ |10〉K(|00〉X + |01〉X − |10〉X + |11〉X)

+ |11〉K(|00〉X + |01〉X + |10〉X − |11〉X)
]
(|0〉V − |1〉V ). (11)

This is four orthogonal states of K correlated with four orthogonal states of X. Applying to
register X the Hadamard transform, then the transformation obtained by computing δ(0, x),
then another time the Hadamard transform (for short, applying the transformation U ) yields:

�2 = 1

2
√

2
(|00〉K |00〉X + |01〉K |01〉X + |10〉K |10〉X + |11〉K |11〉X)(|0〉V − |1〉V ), (12)

namely an entangled state where each value of k is correlated with the corresponding so-
lution found by the second player (the same value of k but in register X). The final mea-
surement of [K] and [X] in state (12) determines the moves of both players. The reduction
induced by measuring [K], backdated to before running the algorithm, yields the original
Grover’s algorithm.

5.2 Checking the 50% Rule

The information acquired in the final measurement of [K] and [X] is 2 bits. These are the
two bits of register K ; in fact the content of X is a function of the content of K , therefore
the information contained in X is redundant. The quantum algorithm requires the number
of function evaluations of a classical algorithm working on a solution space reduced in
size because one bit of information about the content of K , either k0 or k1, is known in
advance. The classical algorithm should perform function evaluation (compute δ(k, x)) for
the missing bit. This verifies the 50% rule for n = 2.

More in general, a classical algorithm that knows in advance 50% of the n bits that
specify the database location, in order to identify the n/2 missing bits should perform
O(2n/2 = √

N) function evaluations (computations of δ(k, x)), against the O(2n = N) of
a classical algorithm without advanced information. This means a quadratic speed up. This
verifies the 50% rule for n > 2. This rule says that unstructured database search is liable of
a quadratic speed up on the basis of purely classical considerations.

5.3 Building the Quantum Algorithm out of the Advanced Information Classical
Algorithm

The function evaluation stage of the quantum algorithm—namely the transformation of �0

(10) into �1 (11)—is the sum of the histories of the advanced information classical algo-
rithm (see Sect. 2.3).

The choice of the initial phase of each history is justified as in Deutsch’s algorithm.
We examine the outcome of the function evaluation stage, namely the �1 of (11). Reg-

isters K and X are maximally entangled, orthogonal states of K , each corresponding to a
value of k, are correlated with orthogonal states of X. This means that the value of k has
propagated to register X. To read this value, we should rotate the X basis in such a way
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that −|00〉X + |01〉X + |10〉X + |11〉X (correlated with |00〉K ) goes into |00〉X , etc. This is a
constructive definition of the transformation U .

Generalizing to n > 2 is straightforward. Given the advanced knowledge of n/2 bits, in
order to compute the missing n/2 bits we should perform function evaluation and rotate the
basis of X an O(2

n
2 ) times. The first time we obtain a superposition of an unentangled state

of the form (10) (the initial state transformed into itself with a slightly smaller amplitude)
and a maximally entangled state of the form (12). At each successive iteration, the amplitude
of the latter state is amplified at the expense of the amplitude of the former, until it becomes
(about) 1 in O(2

n
2 ) iterations.

6 Conclusions

We have verified that the 50% rule, the fact that a quantum algorithm requires the number of
function evaluations of a classical algorithm that knows in advance 50% of the information
that specifies the solution of the problem, holds for the main quantum algorithms.

This rule, besides shading light on the nature of quantum computation, brings the search
of the problems solvable with a quantum speed up to an entirely classical framework. The
quantum speed up comes out by comparing two classical algorithms, with and without the
advanced information. This rule can therefore be used for a systematic exploration of the
possibility of achieving speed ups, perhaps to explain why the speed ups discovered until
now are so few. Once identified a problem liable of speed up, the same rule can be used a
second time to search the quantum algorithm that solves the problem. In fact the advanced
information classical algorithm defines the quantum algorithm.

The 50% rule establishes a correspondence between quantum computation and classical
computation with advanced information. It is natural to ask ourselves whether, in some more
general sense, quantum mechanics is classical mechanics with advanced information. This
question would deserve further investigation.
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David Finkelstein, Lov Grover, Günter Mahler, and Hartmut Neven.
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